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Abstract The peroxisome proliferator-activated recep-
tors (PPARs) have increasingly become attractive targets
for developing novel anti-type 2 diabetic drugs. We
employed comparative molecular field analysis (CoMFA)
and comparative molecular similarity indices analysis
(CoMSIA) to study three-dimensional quantitative struc-
ture–activity relationship (3D QSAR) based on existing
agonists of PPARg (including five thiazolidinediones and
74 tyrosine-based compounds). Predictive 3D QSAR
models with conventional r2 and cross-validated coeffi-
cient (q2) values up to 0.974 and 0.642 for CoMFA and
0.979 and 0.686 for COMSIA were established using the
SYBYL package. These models were validated by a test
set containing 18 compounds. The CoMFA and CoMSIA
field distributions are in general agreement with the
structural characteristics of the binding pockets of
PPARg, which demonstrates that the 3D QSAR models
built here are very useful in predicting activities of novel
compounds for activating PPARg.

Keywords 3D QSAR · CoMFA · CoMSIA · PPAR ·
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Introduction

The peroxisome proliferator-activated receptors (PPARs)
belong to the nuclear receptor superfamily of ligand-
activated transcription factors. [1] There are three known
subtypes, namely, PPARa, PPARg, and PPARd (first

reported as PPARb) distributed in a spatial fashion among
different tissues. The PPARs form heterodimers with
retinoid X receptor (RXR) and activate upon binding to a
hormone response element located in the promoter region
of target genes by their cognate ligands. The activation of
PPAR/RXR heterodimers results in specific induction of
subsets of genes in controlling lipids, carbohydrates, and
energy homeostasis. [2] Thus, inappropriate activation or
inactivation of PPARs can be directly linked to patho-
logical processes such as cases of type 2 diabetes,
cardiovascular diseases, obesity, and dyslipidemia.

Recently, a class of compounds termed thiazolidine-
diones (TZD) has been developed as treatment for type 2
diabetes to reduce hyperglycemia by promoting insulin
action without additional insulin secretion. [3] Their
effects are proposed to be a result of initiation and
modulation of adipocyte differentiation by agonist activ-
ity of PPARg. Although TZD type treatments improve
insulin resistance, they offer little protection from emi-
nent cardiovascular risk associated with type 2 diabetes.
Side effects such as inductions of obesity, edema, and
anemia in treated patients further hamper their extended
use in the management of the diseases. Therefore,
development of new treatments with insulin sensitizing
and cholesterol/triglyceride-lowering effects is of general
interest.

Fibrates that are known to have triglyceride- and
cholesterol-lowering activity activate another member of
this family, the PPARa, which is mainly expressed in
tissues such as liver. PPARa stimulates peroxisomal
proliferation that enhances fatty acid oxidation, leading to
reduced fatty acid levels in blood. [4] Most recently,
PPARd was reported to modulate lipid metabolism in
which PPARd serves as a widespread regulator of fat
burning in tissues where PPARa is much less expressed.
Acute treatment of obese mice with a PPARd agonist
leads to improved lipid profiles and reduced adiposity. [5]
The biological data thus point to a therapeutic rationale
for the design of agonists that could modulate three
subtypes of PPAR receptors in a selective fashion.
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PPARa, g, and d possess domain structures common to
all other members of the nuclear hormone receptor
superfamily, most notably the DNA-binding domain
(DBD) and ligand-binding domain (LBD). The structures
of the PPARg LBD with different agonists bound have
been determined by X-ray crystallography. [6, 7, 8] A
series of tyrosine-based PPARg agonists, [9, 10, 11]
exemplified by GI 262570 (farglitazar), and other struc-
turally diverse PPARg agonists [12, 13, 14, 15, 16] have
been developed. Therefore, these data can be used as a
training set to build proper QSAR models in an attempt to
develop a methodology for better and quicker design of
PPAR ligands.

CoMFA (comparative molecular field analysis) [17]
and CoMSIA (comparative molecular similarity indices
analysis) [18] are commonly used 3D QSAR methods.
The widely used CoMFA method calculates steric and
electrostatic properties according to Lennard-Jones and
Coulomb potentials. The more recently reported CoMSIA
approach calculates similarity indices in the space sur-
rounding each of the aligned molecules in the data set.
Similarity is expressed in terms of five different physi-
cochemical properties: steric occupancy, electrostatic
field, local hydrophobicity, and hydrogen-bond donor
and acceptor properties. [19] Markus B�hm’s study has
shown that CoMSIA possesses better predictive power
and greater robustness compared to CoMFA in some
cases. [20] Another strength of CoMSIA is in visualiza-
tion: it can bring forth five different contour maps, but
CoMFA only can reveal two different contour maps.

Kurogi has developed a 3D QSAR model for antidi-
abetic TZDs using the Apex method. [21] This model
identifies molecular features from only seven selected
TZDs, and results in an inability to explain more complex
compounds such as tyrosine-based PPARg agonists.
Kulkarni et al. also have made a 3D QSAR model by
using 53 TZDs as training set and 15 TZDs as test set,
[22] but the method only contained CoMFA and also did
not include more complex compounds.

In this paper, we investigate the local physicochemical
properties involved in the interaction between the agonists
and the PPARg LBD by using CoMFA and CoMSIA. The
results reveal that such models can be used to predict the
affinity of new, untested PPARg agonists and, through
analysis of contribution maps, to identify new opportu-
nities in design and synthesis of high-affinity agonists.

Materials and methods

Molecular modeling and CoMFA, CoMSIA analyses were per-
formed using SYBYL [23] version 6.81 running on a Silicon
Graphics O2+ (R12000) workstation with the IRIX 6.5 operating
system.

Data set

The structures of 97 agonists including six TZDs and 91 tyrosine-
based compounds used in this study and their binding affinities
(pKi) with PPARg originated from the same laboratory. [9, 10, 11]

All compounds have been shown to be potent agonists of PPARg.
Structural variations of the parent structure, present in all
molecules, were allowed at positions R1 and R2 (see Scheme 1).

All compounds were treated as uncharged except for com-
pounds 66 and 96 because they are dicarboxylic acids and a
carboxy is connected to a phenyl ring directly, which results in
stronger acidity than normal organic acids. These two compounds
were treated as deprotonated and negatively charged in this study.
The remaining tyrosine-based compounds all have a carboxy and an
amino, so they were treated as neutral. A training set including 79
PPARg agonists was used for all CoMFA and CoMSIA analyses.
These compounds are summarized in Table 1. Because only the (S)-
enantiomers of the TZDs and tyrosine-based compounds bind to the
receptor with high affinity, [24] the pKi values of the racemates are
augmented with log 2, i.e., 0.30 and the structures of the racemates
used in the modeling were treated as the S-conformation. The
alkene configurations of 78, 79 and 83 were treated as Z, E, and Z
respectively.

Fig. 1 shows the distribution of pKi for both the training set and
test set. The distribution of the data is not ideal for modeling since
most of the data centralize in the region 8.5–9, meaning that most
of the compounds have high affinity to PPARg.

Alignment

The high flexibility of the tyrosine-based compounds makes it
much more difficult to obtain meaningful CoMFA and CoMSIA
analyses than for rigid molecules. For example, through random
conformational search in SYBYL by default parameters, we
obtained the low energy conformers of farglitazar (15), and this
conformation differs from the conformation in the crystal structure

Scheme 1

Fig. 1 Distribution of pKi. The higher the column is, the more
compounds it contains. The dark green represents test set
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Table 1 The structure of 79 agonists in the training set and their actual activities
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(1FM9) significantly (see Fig. 2). This is due to some aromatic
rings in farglitazar that induce p–p stacking.

To obtain a consistent alignment, two crystal structures of
PPARg LBD from the Protein Data Bank (PDB) [25] were used as
references (1FM6, 1FM9). [26] The first contains a TZD, rosigli-
tazone (5), and the second contains a tyrosine-based compound,
farglitazar (15). We used these two compounds as templates to
align all molecules. The reference atoms used as the alignment
points were as follows: (i) six aromatic carbon atoms of the
common phenyl alkyl ether moiety in the middle part of these
molecules; (ii) an oxygen atom and a carbon atom connected this
aromatic ring; (iii) the chiral carbon atoms situated at the ring of
thiazolidinedione or the a-carbon atoms in tyrosine-based com-
pounds (see atoms numbered 1–9 in Fig. 3).

The R1 and R2 substituents were constructed from the SYBYL
fragment database and were relaxed to local minima using the
TRIPOS force field. [27] Energy minimizations were performed for
the molecules using the Tripos force field with a distance-
dependent dielectric and the Powell conjugate-gradient algorithm
with a convergence criterion of 0.01 kcal mol�1. Partial atomic
charges were calculated using the semiempirical program MOPAC
6.81 [28] and applying the AM1 Hamiltonian. The structural
diversity of the aligned ligands obtained is shown in Fig. 4. The
finally accepted superposition showed reasonable fit to the binding
pockets.

CoMFA and CoMSIA 3D QSAR modeling

In both CoMFA and CoMSIA analyses, a 3D cubic lattice with grid
spacing of 2 or 1 � was created to encompass the aligned
molecules. CoMFA descriptors were calculated using an sp3-carbon
probe atom with a van der Waals radius of 1.52 � and a charge of
+1.0 to generate steric (Lennard-Jones 6–12 potential) field
energies and electrostatic (Coulombic potential) fields with a
distance-dependent dielectric at each lattice point. The SYBYL
default energy cutoff of 30 kcal mol�1 was used.

CoMSIA calculates similarity indices at the intersections of a
surrounding lattice. The similarity index AF for a molecule j with i
atoms at the grid point q is determined as follows: [29]

Aq
F;kðjÞ ¼ �

X
wprobe;kwike

�ar2
iq

a This compound was an oxazole in the original of reference 10
(compound 21), but a careful reading suggests that it is actually a
thiazole, like 28 and 30
b This compound is (R)-enantiomer
c This compound was treated as deprotonated and negatively
charged

Fig. 2 a The conformation of farglitazar (15) in 1FM9 crystal. b
The lowest energy conformation of farglitazar obtained by random
conformational search in SYBYL

Fig. 3 Compounds used as templates for molecular alignment;
atoms labeled in bold face and numbered 1–9 are used as the
reference atoms in alignment protocol of the SYBYL program
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Five physicochemical properties k (steric, electrostatic, hydro-
phobic, and hydrogen-bond donor and acceptor) were evaluated,
using a common probe atom with 1-� radius and charge,
hydrophobicity, and hydrogen-bond property of +1. A Gaussian
type distance dependence was considered between the grid point q
and each atom i of the molecule. The value of the so-called
attenuation factor a was set to the default value, 0.3.

The CoMFA and CoMSIA descriptors were used as indepen-
dent variables, and pKi values were used as dependent variables in
partial least squares (PLS) regression analyses to derive 3D QSAR
models using the standard implementation in the SYBYL package.
The predictive value of the models was evaluated first by leave-

one-out (LOO) cross-validation. The optimal number of compo-
nents was determined by selecting the smallest SPRESS value.
Usually this value corresponds to the highest q2 value. The q2 was
calculated using

q2 ¼ 1�
P
ðYpred � YactualÞ2P
ðYactual � YmeanÞ2

where Ypred, Yactual, and Ymean are predicted, actual, and mean values
of the target property (pKi), respectively. The same number of
components was subsequently used to derive the final QSAR
models. In addition to the q2, the corresponding SPRESS, the number
of components, the conventional correlation coefficient r2, and its
standard error s were also computed.

Results and discussion

3D QSAR models

The statistical results are summarized in Table 2. The q2,
SPRESS, r2, F, and s values were computed as defined in
SYBYL. As for the 79 compounds modeled by standard
parameters, because compound 29 has a residual of �1.42
logarithm units in CoMFA and a residual of �1.53
logarithm unit in CoMSIA and compound 74 has a
residual of �1.15 logarithm unit in CoMFA and a residual
of �0.98 logarithm unit in the 2-� grid spacing CoMSIA
model, they appear to be outliers (the reason will be
discussed later). After dropping them from the training
set, we re-performed the 3D QSAR analyses on the data
set of 77 compounds. The results are also shown in
Table 2, which shows that the models based on the 77
compounds are much better than those based on 79
compounds. All the following results and discussion are
based on the 77-compound models. The plots of predict-

Fig. 4 Alignment of the 79 agonists in the training set

Table 2 PLS statistics of
CoMFA and CoMSIA 3D
QSAR models

step
size

PLS statistics 79 compounds model 77 compounds model

CoMFA CoMSIA CoMFA CoMSIA

2 � q2 0.514 0.580 0.642 0.686
SPRESS 0.795 0.750 0.716 0.708
r2 0.921 0.970 0.974 0.979
F 108.0 248.3 288.2 358.2
s 0.291 0.181 0.152 0.151
PLS components 7 10 8 10
Field contribution
Steric 0.593 0.173 0.563 0.168
Electrostatic 0.407 0.256 0.437 0.241
Hydrophobic 0.277 0.273
Donor 0.148 0.170
Acceptor 0.145 0.148

1 � q2 0.509 0.573 0.597 0.677
SPRESS 0.780 0.755 0.756 0.714
r2 0.870 0.969 0.891 0.972
F 89.1 246.2 107.4 361.3
s 0.367 0.182 0.336 0.150
PLS components 5 10 5 10
Field contribution
Steric 0.504 0.173 0.509 0.272
Electrostatic 0.496 0.255 0.491 0.167
Hydrophobic 0.272 0.236
Donor 0.152 0.151
Acceptor 0.148 0.175
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ed versus actual binding affinities for the fitted PLS
analyses are shown in Figs. 5 and 6, which give the
results of CoMFA and CoMSIA respectively. Also,
augmenting the pKi values of the racemic mixtures by
log 2 did not seem to result in over- or underprediction by
these models.

Reducing the lattice step size from 2 to 1 � resulted in
a change in the q2 value from 0.642 to 0.597 in the
CoMFA analysis, from 0.686 to 0.677 in the CoMSIA
analysis in the 77 compounds model. The r2 also declined
from 0.974 to 0.891 in the CoMFA analysis, from 0.979
to 0.972 in the CoMSIA analysis. Thus, in this study, the
models based on 2-� lattice step size are somewhat better
than the models based on 1-� lattice step size. In all

cases, the CoMSIA analyses reveal better correlations
expressed in terms of higher q2 value (Table 2). CoMFA
also appears to be more dependent on grid spacing than
CoMSIA. [20] Table 2 also indicates that the numbers of
PLS components are higher in CoMSIA than for CoMFA.

Although pEC50 of these compounds with PPARg
were also reported, [9, 10, 11] we could not obtain good
models of CoMFA and CoMSIA through pEC50 (the
correlation coefficient between pKi and pEC50 is 0.66).
After all, the free energy of binding is related to pKi but
not to pEC50.

Fig. 5 Calculated predictions versus actual binding affinities for the 77 agonists of the training set (two outliers were picked out). The
predicted values were obtained by PLS analyses using CoMFA with 2-� (a) and 1-� (b) grid spacing

Fig. 6 Calculated predictions versus actual binding affinities for the 77 agonists of the training set (two outliers were picked out). The
predicted values were obtained by PLS analyses using CoMSIA with 2-� (a) and 1-� (b) grid spacing
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Table 3 The structure of 18 agonists in the test set and their actual activities

a This compound was treated as deprotonated and negatively charged
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Predictive power of the CoMFA and CoMSIA models

To test the predictive power of the CoMFA and CoMSIA
models obtained, 18 additional agonists (including one
TZD and 17 tyrosine-based compounds, see Table 3) were
selected as a test set. The molecules were built and
aligned by the same protocol as described for the training
set. The criteria for choosing training set are (i) the pKi
values distribution of the test set should be consistent with
that of the training set; (ii) the volume of oriented
molecules in the test set should be within the volume of
oriented molecules in the training set. Predictions were
performed using the models based on both 2-� and 1-�
lattice spacing. Table 4 summarizes the results obtained
from the CoMFA and CoMSIA predictions. The plots of
predicted versus actual binding affinity for the test set

molecules are shown in Figs. 7 and 8, which show models
based on CoMFA and CoMSIA respectively. The predic-
tive r2 (r2

pred) values are also shown in Table 4 (the outlier
96 was dropped when calculating these values). The r2

pred
will be based on molecules of the test set only and is
defined as:

r2
pred ¼

SD� PRESS

SD

where SD is the sum of the squared deviations between
the biological activities of the test set and mean activity of
the training set molecules. PRESS is the sum of the
squared deviation between predicted and actual activity
values from every molecule in the test set.

By predicting the binding constants of 18 additional
ligands not included in the training set, we appear to

Fig. 7 Predicted versus actual binding affinities for the 18 agonists not included in the training set. The predicted values were obtained by
PLS analyses using the CoMFA method with 2-� (a) and 1-� (b) grid spacing

Table 4 Residuals of the pre-
dictions of the test set by the
CoMFA and CoMSIA models

Compound pKi Residuals

CoMFA 2 � CoMFA 1 � CoMSIA 2 � CoMSIA 1 �

80 6.82 0.60 -0.13 0.19 0.41
81 7.29 0.02 0.05 0.16 0.09
82 8.62 0.30 �0.43 �0.37 0.16
83 5.88 �0.41 �0.45 �0.23 �0.33
84 6.98 0.72 0.99 0.45 0.87
85 8.85 �0.26 0.33 0.09 0.35
86 7.48 �0.65 �0.78 �0.53 �0.43
87 8.48 0.53 0.72 0.65 0.36
88 8.96 �0.19 0.30 �0.20 0.14
89 9.06 0.35 0.31 0.16 0.20
90 7.71 �0.51 �0.02 �0.28 �0.41
91 8.87 �0.06 0.06 0.11 �0.03
92 8.55 �0.19 �0.05 �0.08 �0.21
93 7.48 �0.62 �0.76 �0.32 �0.53
94 8.86 �0.13 0.03 0.07 0.12
95 8.31 �0.20 0.01 �0.15 0.12
96 6.49 �1.01 �1.22 �1.25 �0.97
97 8.11 �0.27 �0.63 �0.26 �0.55
r2

pred 0.779 0.730 0.886 0.821
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obtain 3D QSAR models with statistical significance.
Both CoMFA and CoMSIA performed well in the
prediction of the activities of the test compounds. In
almost all the cases, the predicted values fall close to the
observed pKi values, deviating by not more than 1
logarithm unit in binding affinity to PPARg (except
compound 96 which appears to be an outlier).

Outliers

The training set was checked initially for outliers.
Empirically, agonists with a residual between experimen-
tal and predicted pKi values above 1 logarithm unit were
considered as outliers. According to these rules, com-
pounds 29 and 74 were regarded as outliers. In the test set,
compound 96 has residuals of more than 1 logarithm unit
in almost all 3D QSAR models.

Omission of two compounds, 29 and 74, resulted in an
increase in the q2 values from 0.514 to 0.642 for the
CoMFA model, and 0.580 to 0.686 for the CoMSIA
model when using 2-� grid spacing. There are several
reasons that may account for the outliers, for example, an
incorrectly measured experimental value, a different
binding conformation, a significant difference in the
physiochemical properties, or structural uniqueness.
Compound 29 appears to have lower activity than
expected when compared to compounds 30 and 15; and
compound 74 appears to have lower activity than expect-
ed when compared to compounds 73 and 77. In the
training set, only compound 66 was deprotonated and
negatively charged, as was compound 96 in the test set.
Thus, there is only one counterpart, compound 66, in the
training set for compound 96, which resulted in a larger
residual when predicted by the QSAR models. The other
reason of overprediction of compound 96 is the functional

carboxy group, which carries a full negative charge.
Examination of the training set reveals two other
molecules in the training set that are highly analogous
(63 and 64) which possess slightly negatively charged
functional groups in the 4-position of the lower part of the
N-(2-benzoylphenyl) ring. These two compounds both
have very high pKi.

PPARg LBD structure

The PPARg LBD is a bundle of 13 a-helices and a small
four-stranded b-sheet. [30] The crystal structure of the
apo-PPARg (absence of ligand) LBD revealed a large
(~1,300 �3) Y-shaped ligand-binding site located within
the bottom half of the LBD. [3, 4] Fig. 9 gives the
catalytic quadrant of PPARg composed of SER289,
HIS323, TYR473 and HIS449 [31] (the agonist is

Fig. 9 The relevant amino acids surrounding the binding sites of
the PPARg. The catalytic quadrant is formed by SER289, HIS323,
TYR473 and HIS449 (in blue). Farglitazar (15) is exemplified as
the agonist

Fig. 8 Predicted versus actual binding affinities for the 18 agonists not included in the training set. The predicted values were obtained by
PLS analyses using the CoMSIA method with 2-� (a) and 1-� (b) grid spacing
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exemplified by farglitazar). This figure can explain the
difference in biological activity between TZD and tyro-
sine-based compounds. From Tables 1 and 3, we can see
that the binding affinity of TZDs, 1–5, 80 is lower than
their tyrosine-based counterparts 81, 14, 12, 15, 85, 13.
This is because there is a pocket in the bottom left of the
active site where the N-(2-benzoylphenyl) of the tyrosine-
based compounds can plug in (see Fig. 9), and this results
in a more potent binding affinity (mainly through hydro-
phobic action) between the compound and PPARg.
However, TZDs do not have such a group to plug into
this pocket. Because the number of TZDs is much lower
than that of tyrosine-based compounds, this activity
difference cannot be revealed by the CoMFA or CoMSIA
contour maps in this study.

Graphical interpretation of the results

Compared with CoMFA, CoMSIA is claimed to be less
affected by changes in molecule alignment and to provide
smoother and more interpretable contour maps as a result
of employing Gaussian type distance dependence with the
molecular similarity indices. [18] Furthermore, in addi-
tion to the steric and electrostatic fields, CoMSIA defines
hydrophobic and hydrogen-bond donor and acceptor
descriptor fields, which are not available with standard
CoMFA. The use of CoMSIA along with CoMFA shows
that in most instances the former performs similarly to
CoMFA in terms of predictive ability, sometimes slightly
better, and other times slightly worse than CoMFA. In this
study, the steric and electrostatic PLS stdev*coeff contour
maps for the CoMFA models (not shown here) were
similarly placed as those of CoMSIA models, albeit the
polyhedra volumes of the two models are somewhat
different from each other.

The contribution maps obtained by CoMSIA show
how 3D QSAR methods can identify features important
for the interaction between small molecules and the
protein. They allow identification of those positions that
require a particular physiochemical property to improve
binding affinity. The steric, electrostatic, hydrophobic,
hydrogen bond donor, and hydrogen bond acceptor
contours of CoMSIA are shown in Fig. 10 (a–e, respec-
tively). The steric fields (green, more steric bulk favored;
yellow, more steric bulk disfavored) and electrostatic
fields (blue, negative charge favored; red, positive charge
favored) and hydrophobic fields (white, hydrophobic
group favored; yellow, hydrophobic disfavored) and the
H-bond donor (cyan, favored; purple, disfavored) and H-
bond acceptor (magenta, favored; red disfavored) fields
indicate areas around the molecules where changes
increase or decrease activity.

The CoMSIA steric and electrostatic fields are con-
sistent with the known structure–activity relationship for
the compounds contained in the training set from exper-
imental data. For example, the green contour in the region
around the R1 group for this CoMSIA model indicates
that the presence of bulky groups is expected to enhance

binding affinity, examples as shown in the compounds 1–
5. Consistent with the presence of the rather large yellow
contour close to the R2 side, diminished binding affinity
is shown for compounds 55, 56 in which bulky groups are
substituted at N-(2-benzoylphenyl).

Fig. 10b shows that there is a blue contour in the
4-position of the lower part of the N-(2-benzoylphenyl)
ring where negative charge would be favorable for
high pKi. For instance, compounds 63 and 64 have
slightly negatively charged functional groups (–CH2OH
and –CH2NMe2 respectively) at that site, so they have
high pKi value, as discussed before. Compound 96 places
a fully charged carboxylate group in this position in the
model and is thus heavily overpredicted due to the
magnitude of the charge.

The hydrophobic field made the largest contribution to
the CoMSIA QSAR models (Table 2), which suggests
that among the descriptors considered, the hydrophobicity

Fig. 10 CoMSIA stdev*coeff contour maps. Farglitazar (15) is
shown inside the field. a Steric map. Green and yellow polyhedra
indicate regions where more steric bulk or less steric bulk,
respectively, will enhance the affinity. b Electrostatic map. Blue
and red polyhedra indicate regions where negative charge or
positive charge will enhance the affinity. c Hydrophobic map.
Yellow and white polyhedra indicate regions where hydrophobic or
hydrophilic groups, respectively, will enhance the affinity. d H-
bond donor ability map. Cyan and purple polyhedra indicate
regions where hydrogen bond donor groups on the receptor will
enhance or disfavor the binding. e H-bond acceptor ability map.
Magenta and red polyhedra indicate regions where hydrogen bond
acceptor groups on the receptor will enhance or disfavor the
binding
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is the most important factor influencing the PPARg
activating ability of the compounds in the training set.

The contour map of H-bond properties should high-
light the areas beyond the ligands where putative hydro-
gen-bond partners in the protein can form H-bonds that
influence binding affinity significantly. In Fig. 10d, there
is a cyan polyhedron near the oxygen atom of N-(2-
benzoylphenyl). This means that hydrogen-bond donor
groups near this oxygen atom on the receptor will
enhance the binding ability. In fact, this oxygen forms
two H-bonds with a water molecule and the nitrogen atom
in N-(2-benzoylphenyl). [31] However, in this molecular
modeling study, we did not consider the effect of water
molecule. Therefore, in this situation, the water molecule
should be a part of the receptor. Of course, if there is a H-
bond acceptor near this oxygen atom, the biological
activity will be reduced. This is consistent with Fig. 10e.
In Fig. 10e, there is a magenta polyhedron and a red
polyhedron in the upper right corner corresponding to the
(S)-enantiomer and (R)-enantiomer of the tyrosine-based
compounds, respectively.

Conclusions

Although there is a high degree of flexibility of com-
pounds in the training set, we obtained 3D QSAR models
with statistical significance and good predictive abilities
by using CoMFA and CoMSIA. CoMSIA 3D QSAR
models performed better than the CoMFA models in this
study. Molecular surface property (steric, electrostatic,
lipophilicity, and hydrogen-bonding potential) mapping
has been integrated with CoMSIA 3D QSAR to refine
what is known about the binding mode and highlight the
cause of TZD and tyrosine-based compounds’ enantios-
electivity. TZDs such as rosiglitazone and pioglitazone
enhance the sensitivity of target tissues to insulin and also
reduce lipid and insulin levels in animal models of type 2
diabetes and clinically in type 2 diabetes. [32] However,
TZDs have some side effects, for example, weight gain,
edema, and anemia. [33] Some tyrosine-based compounds
are also in clinical trials now. This study should provide
further insights to support structure-based design of anti-
type 2 diabetic drugs to develop novel PPARg agonists
with improved activity profiles.
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